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8 Abstract. Recent advances in land data assimilation have yielded variational smoother

9 techniques designed to solve the surface energy balance based on remote observations of
10 surface radiometric temperature. These approaches have a number of potential advantages
11 over existing diagnostic models, including the ability to make energy flux predictions between
12 observation times and reduced requirements for ancillary parameter estimation. Here, the

13 performance of a recently developed variational smoother approach is examined in detail over
14 a range of vegetative and hydrological conditions in the southern U.S.A. during the middle
15 part of the growing season. Smoother results are compared with flux tower observations and

16 energy balance predictions obtained from the two source energy balance model (TSM). The
17 variational approach demonstrates promise for flux retrievals at dry and lightly vegetated
18 sites. However, results suggest that the simultaneous retrieval of both evaporative fraction and

19 turbulent transfer coefficients by the variational approach will be difficult for wet and/or
20 heavily vegetated land surfaces. Additional land surface information (e.g. leaf area index (LAI)
21 or the rough specification of evaporative fraction bounds) will be required to ensure robust
22 predictions under such conditions. The single-source nature of the variational approach also

23 hampers the physical interpretation of turbulent transfer coefficient retrievals. Intercompari-
24 sons between energy flux predictions from the variational approach and the purely diagnostic
25 TSM demonstrate that the relative accuracy of each approach is contingent on surface con-

26 ditions and the accuracy with which LAI values required by the TSM can be estimated.

27 Keywords: Data assimilation, Surface energy fluxes, Surface radiometric temperature, Tur-
28 bulent transfer coefficients.

1. Introduction

30 Accurate estimates of energy and momentum fluxes between the surface of
31 the earth and the atmospheric boundary layer are of critical importance for a
32 wide range of agricultural, hydrological, and meteorological applications.
33 Efforts to estimate the magnitude of surface fluxes are frequently frustrated
34 by large amounts of land surface heterogeneity and the need to obtain model
35 inputs at high spatial resolutions. These needs can likely be met only with
36 remote sensing. Consequently, a number of models have been developed to
37 estimate surface energy fluxes based on remote observations of the land
38 surface (see e.g. Norman et al., 1995; Bastiaansen et al., 1998; Jiang and

* E-mail: wcrow@hydrolab.arsusda.gov

Boundary-Layer Meteorology 00: 1–26, 2004.
� 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Journal : BOUN SPS Article No. : DO00002121 Dispatch : 17-9-2004 Pages : 26

PIPS No. : DO00002121 h LE h TYPESET

MS Code : BOUN2344-03D h CP h DISK4 4



UN
CO

RR
EC
TE
D
PR
OO

F

39 Islam, 2001; Su, 2002). These approaches generally utilize surface radiometric
40 temperature (Ts) observations to solve the surface energy balance and par-
41 tition incoming radiation into various flux components. They are typically
42 diagnostic in nature and therefore make flux predictions only for instances in
43 which Ts observations are available. Obtaining reliable surface energy flux
44 predictions also requires knowledge of ancillary land surface parameters such
45 as the leaf area index (LAI), surface roughness, and the fractional coverage of
46 vegetation (fv) to accurately estimate near-surface resistance to the transfer of
47 momentum, energy, and water. These parameters are often estimated using
48 remotely observed visible and infrared spectral indices in order to minimize
49 the amount of in situ observations required by the energy balance algorithm.
50 In contrast to diagnostic approaches where surface radiometric temperature
51 is treated as a forcing variable, a number of recent approaches have instead
52 focused on the variational assimilation of Ts into a force-restore equation for
53 surface temperature (Castelli et al., 1999; Boni et al., 2000), and have a number
54 of advantages over purely diagnostic approaches. Most importantly, they
55 provide flux estimates that are continuous in time and can temporally inter-
56 polate, using a physically realistic force-restore prognostic equation, between
57 sparseTs observations (Boni et al., 2001). In addition, estimates of ground heat
58 flux can be obtained using a physically based approach instead of relying on
59 empirical formations that estimate ground heat flux as a fixed fraction of net
60 radiation. A third advantage for variational assimilation-based techniques has
61 recently been described by Caparrini et al. (2003, 2004) who attempt to
62 simultaneously retrieve both turbulent transfer coefficients and daily-averaged
63 evaporative fraction (EF ) magnitudes from Ts observations. A simultaneous
64 retrieval of both variables eliminates the need for the a priori specification of
65 surface roughness lengths to obtain transfer coefficient estimates. To date,
66 retrievability concerns have limited the approach to a single-source geometry
67 for surface radiative emission. In contrast, the disaggregation of surface
68 emission into soil and vegetation components is often viewed as a critical
69 component of other models. Diagnostic approaches such as the two source
70 energy balance model (TSM) (Norman et al., 1995) are based on the disag-
71 gregation of Ts observations into soil and vegetative contributions and the
72 separate calculation of soil and canopy energy fluxes. This separation elimi-
73 nates the need to obtain bulk surface transfer coefficients that attempt to
74 aggregate across soil and vegetation surface components.
75 Currently, the most advanced operational approaches for regional-scale
76 energy flux monitoring are based on the application of TSM principles to
77 geostationary satellite Ts observations and the independent estimation of leaf
78 area index and surface roughness length (Diak et al., 2004). Because of its
79 reduced parameter requirements, the variational smoother approach of
80 Caparrini et al. (2003, 2004) offers an attractive alternative but has not been
81 extensively tested over a wide range of land surface conditions. The purpose
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82 of our study is to evaluate the approach of Caparrini et al. (2003, 2004)
83 during the growing season over a range of different land cover types within
84 the south-central and south-western U.S.A. Three aspects of the approach
85 will be examined: its ability to uniquely and unambiguously retrieve both
86 surface energy fluxes and turbulent transfer coefficients in a simultaneous
87 manner from a time can be series of Ts observations; the degree to which
88 transfer coefficients derived by the model can be physically interpreted; and
89 the accuracy of its energy flux predictions. The examination of model accu-
90 racy and interpretability will be aided by comparison with flux tower
91 observations and TSM predictions at the same series of sites.

2. Energy Balance Models

93 Analysis is based on the variational smoother approach of Caparrini et al.
94 (2003, 2004) utilizing the force-restore equation for surface temperature
95 (VAR-FR) and the diagnostic TSM of Norman et al. (1995). Both models are
96 based on the remote observation of Ts, and the surface energy balance
97 equation that describes the partitioning of incoming net radiation (Rn) into
98 latent energy (LE, L being the latent heat of vaporization and E the evap-
99 oration), sensible heating (H), and ground heat flux (G) components:

Rn ¼ LEþHþ G: ð1Þ
101 Details underlying both approaches are described below.

102 2.1. VARIATIONAL DATA ASSIMILATION APPROACH

103 As noted above, the VAR-FR approach is based on the use of a force-restore
104 equation to model the evolution of surface soil temperature (Ts) in response
105 to variations in radiative forcing (Rn �H� LE) occurring at a diurnal fre-
106 quency (x):

dTs

dt
¼ 2

ffiffiffiffiffiffiffi
px

p

P
½Rn �H� LE� � 2pxðTs � TdÞ; ð2Þ

108 where P is the thermal inertia of the land surface and Td the deep soil
109 temperature. The approach of Caparrini et al. (2003, 2004) rewrites (2) by
110 defining the evaporative fraction (EF) to be:

EF ¼ LE

LEþH
; ð3Þ

112 and utilizing a bulk transfer formulation for H where:

H ¼ qcpCHUðTs � TaÞ ð4Þ
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114 and Ta is the air temperature, U the wind speed, cp is the specific heat of air, q
115 the density of air, and CH the bulk transfer coefficient for heat. Stability
116 impacts on CH can then be described as a function of the bulk Richardson
117 number, RiB:

CH

ðCHÞN
¼ 1þ eWð1� e10RiBÞ; ð5Þ

119 where PSI is the static stability correction parameter and the neutral transfer
120 coefficient ðCHÞN is typically represented as:

ðCHÞN ¼ k2

lnðzref=z0mÞ ln ðzref=z0hÞ
ð6Þ

122 with k representing Van Karman’s constant, zref the measurement height for
123 wind, and z0m and z0h roughness lengths for momentum and heat transfer,
124 respectively.
125 Substracting one from both sides of (3) and solving for H þ LE leads to
126 Hþ LE ¼ H=ð1� EFÞ. Inserting this expression into (2) and expanding H
127 via (4) and (5) yields:

dTs

dt
¼2

ffiffiffiffiffiffiffi
px

p

P

�
Rn�

ðCHÞN
1�EF

½Ts�Ta�qcpU½1þeWð1�e10RiBÞ�
�
�2pxðTs�TdÞ:

ð7Þ

129 Variables P and W are considered to be non-time varying and set equal to
130 750 J m�2 K�1 s�1=2 and ln (2) respectively for all sites. While these values
131 are somewhat uncertain, off-line sensitivity results demonstrate the limited
132 sensitivity of EF results to variations in either parameter. The restoring
133 temperature Td is calculated by applying a semi-diurnal (12-h) filter to Ts

134 observations using a phase lag of 2 h. Values for Rn, U, RiB, and Ta are taken
135 from micro meteorological observations and the definition of the bulk
136 Richardson number:

RiB ¼ g

h
Dhzref
U2

; ð8Þ

138 where g is the gravitational constant, h the potential temperature of the air,
139 and Dh the air/surface potential temperature difference. In this study Ts

140 observations are derived from a ground-based infrared radiative thermom-
141 eter. However, the expectation is that satellite measurements will eventually
142 be utilized. The VAR-FR model is a single-source model in the sense that
143 contributions from soil background to Ts observations are neglected and
144 observations of Ts are directly inserted into (4).
145 Given a times series of daytime Ts observations, Caparrini et al. (2003,
146 2004) describe a variational data assimilation system (VAR-FR) capable of
147 simultaneously retrieving estimates of both ðCHÞN and EF. The variational
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148 problem is solved by obtaining an adjoint state model for (7) and utilizing the
149 model to efficiently search for values of ðCHÞN and EF that minimize the
150 root-mean-squared difference between predictions of Ts obtained via (7) and
151 Ts observations (Castelli et al., 1999). The approach is applied over discrete
152 (multi-day) time periods within which EF is allowed to vary daily and ðCHÞN
153 is held constant. Due to the self-preservation properties of EF (Crago and
154 Brutsaert, 1996), diurnal variation in EF is assumed small and neglected. In
155 order to eliminate the possibility of negative ðCHÞN retrievals, Caparrini et al.
156 (2003, 2004) solve for the transformed parameter R defined to be:

ðCHÞN ¼ eR: ð9Þ

158 The VAR-FR also requires an a priori specification of physically realistic
159 limits for EF. Also otherwise noted, a range of between 0.1 and 0.9 is used.

160 2.2. THE TWO-SOURCE MODEL

161 A detailed description of the original TSM can be found in Norman et al.
162 (1995). The modelling approach evaluates the temperature contribution of the
163 vegetated canopy layer and soil/substrate to the radiometric surface temper-
164 ature observation, and the resulting turbulent heat flux contributions driven
165 by surface–air temperature differences with aerodynamic resistance parame-
166 terizations for the vegetation and soil components. This modelling strategy
167 follows the conceptual two-source framework proposed by Shuttleworth and
168 Wallace (1985) for partially vegetated surfaces (see also Shuttleworth and
169 Gurney, 1990).
170 There have been several modifications to the original TSM formulation
171 that can significantly influence flux predictions for partial canopy covered
172 surfaces. These include estimating the divergence of net radiation through the
173 canopy layer with a more physically based algorithm, adding a simple method
174 to address the effects of clumped vegetation on radiation divergence and wind
175 speed inside the canopy layer, adjusting the magnitude of the Priestley–Taylor
176 (Priestley and Taylor, 1972) coefficient used in estimating canopy transpira-
177 tion, and formulating a new estimation for soil resistance to sensible heat-flux
178 transfer (Kustas and Norman, 1999a, b; 2000a, b).
179 The TSM and VAR-FR approaches present a number of key differences.
180 The TSM approach uses Ts as a forcing variable to solve a diagnostic set of
181 equations that considers the impact of thermal emission from both the
182 canopy and soil. For the 4-h period on either side of solar noon, the TSM
183 model assumes ground heat-flux fraction (GF) to be a function of LAI, Rn,
184 and solar zenith angle hs (Norman et al., 1995; Anderson et al., 1997):

GF ¼ G=Rn ¼ cgexp
�
� jLAI=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2coshs

p �
: ð10Þ
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186 Following Kustas et al. (1998), cg is typically assumed to be 0.35 and the
187 extinction coefficient j set to 0.6. Since GF is modelled as a simple function of
188 LAI and canopy heat storages are neglected, the TSM does not require the
189 forward temporal integration of any thermal state. Flux calculations are
190 made based solely on instantaneous micrometeorological observations, plus
191 vegetation structure and Ts. The roughness length for momentum is taken to
192 be one-eighth of plant canopy height. Accurate LAI estimates for the vege-
193 tation canopy must be independently obtained in order to calculate the rel-
194 ative contribution of vegetative and soil sources to Ts observations, the net
195 radiation partitioning between the vegetation canopy and soil, and the
196 aerodynamic resistance to momentum transfer within the canopy.
197 In contrast, the VAR-FR attempts to solve for the heat transfer coefficient
198 and surface energy fluxes (including G) by assimilating Ts observations into a
199 prognostic force-restore equation for canopy temperature (7). Unlike the
200 TSM, memory of past thermal states is retained in the deep temperature state
201 Td. However, as a single-source approach, it neglects the impact of back-
202 ground soil emission on Ts observations.

3. Study Locations and Data

204 Site locations, surface conditions, and dates are listed in Table I; measure-
205 ments of surface energy fluxes, micrometeorological quantities, and surface
206 radiometric temperature were available at all sites. Data at the MONSOON1
207 and MONSOON5 sites were collected as part of the MONSOON’90 field
208 experiment (Kustas and Goodrich, 1994) in the U.S. Department of Agri-
209 culture Agricultural Research Service’s Walnut Gulch experimental wa-
210 tershed near Tombstone, Arizona. The LW site was maintained as a long-term

TABLE I

Study site characteristics

Site Lat/long Julian days Year Land cover NDVI EF

ELRENO1 35.54/)98.02 175–195 1997 Pasture 0.61 0.83

ELRENO13 35.56/)98.06 171–195 1997 Bare soil 0.00 0.50

MONSOON1 31.74/�110.05 209–222 1990 Sparse shrubs 0.20 0.55

MONSOON5 31.73/�109.94 210–221 1990 Sparse grass 0.35 0.60

FIFE 39.00/�96.50 169–194(wet) 1987 Native prairie 0.70 0.86

194–219(dry) 1987 Native prairie 0.61 0.65

LW 36.60/�97.48 149–188(wet) 1997 Range 0.30 0.53

188–228(dry) 1997 Range 0.30 0.43
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211 energy flux study site between 1996 and 1998 by the National Oceanic and
212 Atmospheric Administration/Atmospheric Turbulence and Diffusion Divi-
213 sion within the Little Washita (LW) river basin in south-central Oklahoma.
214 The ELRENO1 and ELRENO13 sites in the vicinity of El Reno, Oklahoma
215 were instrumented as part of the 1997 Southern Great Plains Hydrology
216 Experiment. Site details can be found in Hollinger andDaughtry (1999) and in
217 SGP’97 documentation accessible online at http://hydrolab.arsusda.gov/
218 sgp97/documents.html.
219 Data collected at the MONSOON, LW, and ELRENO sites are based on
220 observations made on single flux towers. In contrast, data for the First
221 International Satellite Land Surface Climatology Project (ISLCP) Field
222 Experiment (FIFE) site are based on the areal average of several flux towers
223 within the 152-km2 FIFE study site (Sellers et al., 1992) in eastern Kansas.
224 Acquisition, processing, and spatial averaging of the FIFE dataset is detailed
225 in Betts and Ball (1998). Flux observations at the MONSOON sites had
226 previously been modified to ensure energy balance by solving for LE as a
227 residual (Kustas et al., 1994). At the ELRENO and LW sites, raw flux
228 observations were considered only from days exhibiting a daytime closure
229 ratio, (LEþHÞ=ðRn � G), greater than 0.75.
230 Within the south-central and south-western U.S.A., middle to late parts of
231 the growing season (June to August) typically exhibit the most complex
232 temporal interaction between periods of energy- and water-controlled
233 evapotranspiration, the most profound impact of water stress on vegetation
234 health and productivity, and the strongest contrasts between soil and vege-
235 tation temperatures. As a consequence, prediction of surface energy fluxes
236 based on Ts observations during this period is both difficult and highly rel-
237 evant for agricultural and land management applications. In out analysis, site
238 locations and times were selected to capture the full range of growing season
239 hydrologic and vegetation conditions typically encountered in the region.
240 Normalized difference vegetation index (NDVI) values at the sites range from
241 essentially zero at the bare soil ELRENO13 site to 0.70 at the FIFE site.
242 Average daytime EF observations range between 0.43 for arid conditions
243 encountered at the rangeland LW site to 0.86 for observations collected
244 during a wet period at the native prairie FIFE site. Measurements of day-
245 time-averaged (1000–1600 CST) turbulent energy fluxes range between 100
246 and 400 W m�2 for H and 100 and 500 W m�2 for LE.

4. Results

248 A fundamental concern about application of variational techniques to any
249 geophysical problem is whether the approach is capable of making unam-
250 biguous and physically interpretable predictions of variables. If so, then a
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251 secondary question arises as to how accurate these retrievals are relative to
252 independent measurements and competing approaches. To this end, the
253 approach of Caparrini et al. (2003, 2004) was evaluated at sites listed in
254 Table I based on its ability to simultaneously retrieve both EF and ðCHÞN
255 (Section 4.1), the physical interpretability of its ðCHÞN predictions (Section
256 4.2), and its ability to accurately estimate EF (Section 4.3). Accuracy
257 comparisons for EF retrievals were made relative to both independent flux
258 tower observations as well as comparable TSM predictions obtained at the
259 same series of sites. All comparisons to measurements were made based on
260 daytime-averaged (1000–1600 local time) energy flux values.

261 4.1. SIMULTANEOUS RETRIEVAL OF EF AND ðCHÞN

262 Using the adjoint-based variational data assimilation strategy of Caparrini
263 et al. (2003, 2004) (VAR-FR), EF and R predictions were calculated at each of
264 sites listed in Table I. Based on optimization against a time series of Ts

265 observations, the VAR-FR algorithm provides output for a separate EF value
266 for each day in the assimilation period and a singleR prediction that defines the
267 heat transfer coefficient for the entire period. Averaging daily EF predictions
268 within a given assimilation yields the period averaged evaporative fraction
269 (EF). Figure 1 plots iterative (EF) and R values obtained as the adjoint-based
270 variational approach searches for a minimum at the MONSOON1 site, and
271 Figure 2 shows the minimization of Ts root-mean-square-error (RMSE) as a
272 function of iteration number for the four initial conditions shown in Figure 1a.
273 Initial conditions were arbitrarily selected to span a range of possible land
274 surface conditions. The VAR-FR system converges to a relatively flat valley
275 after 1000 iterations (Figures 2c and 3), which expresses a trade-off between
276 cooling of the surface via turbulent transfer and evapotranspiration. Highly
277 negative R values imply smooth surfaces and vigorous evapotranspiration.
278 Larger (less negative) R values imply rougher surfaces with increased reliance
279 on turbulent heat transfer for cooling. Convergence beyond iteration number
280 1000 (approximately) is extremely slow (Figure 1d) and associated with
281 essentially negligible variations in Ts RMSE (Figure 2). Each of the four con-
282 vergence pathways in Figure 2 is likely to satisfy any reasonable convergence
283 criterion before iteration number 2500. Nevertheless, large differences inR and
284 EF retrievals persist betweenpathways beyond5000 iterations (Figure 1d). This
285 suggests that optimized R and EF values will vary as a function of initial con-
286 ditions (Figure 1a) unless extremely strict convergence criteria are utilized.
287 In order to overcome convergence problems associated with the simulta-
288 neous optimization of both R and EF, the approach of Caparrini et al. (2003,
289 2004) was modified so that EF values were separately optimized for a range of
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290 fixed R values. Optimization yields a time series of EF predictions associated
291 with the best fit to observed Ts values for a fixed value of R. In this case,
292 convergence was quite good after 100 iterations of the algorithm. Figure 3a
293 plots the temporal average of EF values (EF) required to minimize the model
294 Ts error over a range of R values at four sites listed in Table I: ELRENO13,
295 LW(dry), MONSOON1, and FIFE(wet). Figure 3b shows Ts RMSE differ-
296 ences between observed and modelled Ts for the same range of R. The
297 simultaneous retrieval of both EF and R requires the presence of well-defined
298 minima in Ts RMSE to allow for the unambiguous specification of R values.
299 However, observed Ts minima at the LW(dry) and FIFE(wet) sites are
300 shallow with respect to variations in R (Figure 3b) and lend uncertainty to
301 optimized R values. This ambiguity can have major impacts on the sub-
302 sequent accuracy of EF predictions (Figure 3c). For instance, during the
303 LW(dry) period, R values between �6.25 and �5.25 produce essentially the
304 same fit to Ts observations yet lead to EF RMSE that vary between 0.1 and
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Figure 1. Iterative evolution R and EF retrivals by the VAR-FR approach at the MON-

SOON1 site. Initial conditions for the iterative solver are indicated with open circles.
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305 0.3. At the FIFE(wet) site, very good fits to both Ts and EF observations are
306 associated with an R value near �4.5. However, larger (less negative) values
307 of R produce essentially identical fits to Ts observations and are associated
308 with a poorer EF accuracy. At both sites, Ts observations do not unambig-
309 uously identify R values associated with accurate EF predictions. This lack of
310 identifiability is the ultimate source of convergence problems encountered
311 when R and EF are simultaneously optimized (Figures 1 and 2).
312 Some amount of additional land surface information appears necessary to
313 unambiguously retrieve both EF and R at these sites. This information need
314 not be detailed to offer substantial improvement. For instance, following
315 Garratt and Hicks (1973) and assuming ln ðz0m=z0hÞ � 2 in (6), a z0m value of
316 0.5 m corresponds to an R value of �4.2 at the native prairie FIFE site. Such
317 a roughness length is significantly larger than the 0.01–0.03 m range esti-
318 mated from micrometeorological observations at the same site (Verma et al.,
319 1992) and can be rejected as physically unrealistic given even cursory
320 knowledge of FIFE land cover conditions. Nevertheless, limiting R retrievals
321 to R > �4.2 substantially improves VAR-FR EF predictions at the site (EF

322 RMSE of 0.10 versus 0.30).

323 4.1.1. Role of EF Variability
324 Figure 4 examines this retrievability issue in detail at the MONSOON1 site.
325 The force-restore equation for surface temperature, (7), predicts that, for
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Figure 2. Decrease in Ts RMSE as a function of VAR-FR iteration number for the four initial
conditions shown in Figure 1.
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326 similar meteorological and Rn conditions, changes in ðCHÞN and EF will
327 produce identical Ts temporal variations provided the ratio ðCHÞN/ð1� EFÞ
328 is conserved. As a consequence, an optimal value of this ratio can be
329 maintained for any pre-specified value of ðCHÞN via the appropriate adjust-
330 ment of EF. Figure 4a plots the average of ðCHÞN/ð1� EFÞ within the
331 assimilation period, ðCHÞN/ð1� EFÞ, for a range of pre-specified R values. In
332 the vicinity of the observed Ts RMSE minimum (see Figure 4b), the VAR-FR
333 algorithm compensates for changes in ðCHÞN by adjusting EF (Figure 4c) and
334 maintaining nearly optimal ðCHÞN/ð1� EFÞ levels. Values of ðCHÞN/ð1� EFÞ
335 deviate significantly from optimal levels only when EF values required for
336 optimal fitting to Ts observations fall outside the pre-specified EF bounds. In
337 this case, the data assimilation system is forced to truncate EF retrievals and
338 is prevented from obtaining an optimal fit to Ts observations (Figure 4b). If
339 EF values are prevented from becoming optimally large (small), model Ts

340 predictions become too high (low) and ðCHÞN values can be rejected based on
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Figure 3. Values of (a) EF, (b) Ts RMSE, and (c) EF RMSE associated with the best fit to Ts

observations found by the VAR-FR algorithm for a range of pre-specified values of R.
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341 their inability to match Ts observations (Figure 4d). The larger the range of
342 EF deemed acceptable, however, the more latitude the variational approach
343 has to adjust EF with impunity and the shallower the Ts RMSE minimum.
344 Consequently, the simultaneous retrieval of ðCHÞN and EF is dependent on
345 the a priori restriction of EF to a certain bounded range. These bounds should
346 reflect knowledge of a site’s vegetation and climatic characteristics. For in-
347 stance, dense vegetation at the FIFE site virtually guarantees an EF value
348 above 0.5. Consequently, restricting the EF range to between 0.5 and 0.9 (as
349 opposed to between 0.1 and 0.9), substantially improves the retrievability of
350 ðCHÞN at the FIFE(wet) site and reduces EF RMSE by 50% (0.29 – 0.15). In
351 contrast, restricting EF predictions to a lower range, say between 0.3 and 0.7,
352 is inconsistent with the site’s vegetation and climatic characteristics and does
353 not lower the EF RMSE (0.30 versus 0.29).
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Figure 4. For the MONSOON1 site, values of (a) ðCHÞN=ð1� EFÞ, (b) Ts RMSE, (c) EF and
(d) Ts associated with the best fit to Ts observations found by the VAR-FR algorithm for a
range of pre-specified values for R and different EF retrieval bounds.

W.T. CROW AND W.P. KUSTAS12

Journal : BOUN SPS Article No. : DO00002121 Dispatch : 17-9-2004 Pages : 26

PIPS No. : DO00002121 h LE h TYPESET

MS Code : BOUN2344-03D h CP h DISK4 4



UN
CO

RR
EC
TE
D
PR
OO

F

354 Since EF is simply an averaged value obtained within the entire assimi-
355 lation period, deviations from the optimal ðCHÞN/ð1� EFÞ levels occur
356 before temporally averaged EF values approach these limits (Figure 4d).
357 Extreme EF conditions within the assimilation period encroach upon fea-
358 sible EF bounds and provide instances in which good Ts fits cannot be
359 accommodated for certain values of ðCHÞN without resorting to physically
360 unrealistic EF values. The presence of variability within the assimilation
361 period, and/or more tightly bounded ranges for realistic EF values, en-
362 hances retrievability by presenting cases where extreme values of EF are
363 required to match Ts observations. If these values fall outside of the
364 physically realistic bounds for EF, specific values of ðCHÞN can be labeled as
365 non-optimal. Retrievability can also be enhanced by employing longer
366 assimilation windows that encompasses greater EF retrievability within the
367 assimilation period.

368 4.1.2. Role of Land Surface Conditions
369 Figure 5 plots values for ðCHÞN/ð1� EFÞ that lead to Ts RMSE minima at
370 each site; results for all eight sites are plotted in order of decreasing NDVI
371 values for Table I. Large variations are observed between sites. The magni-
372 tude of this ratio, along with P, determines the vigour of diurnal variations in
373 Ts due to the periodic radiative forcing of the land surface – see equation (7).
374 High (low) ðCHÞN/ð1� EFÞ fractions are typical of wet and highly vegetated
375 (dry and sparsely vegetated) sites where diurnal Ts dynamics are (pro-
376 nounced) damped. Setting an optimal value of this fraction equal to some
377 constant K, solving for EF, and taking the derivative of EF with respect to
378 ðCHÞN yields:

dEF

dðCHÞN
¼ �K�1: ð11Þ

380 A highly negative dEF/dðCHÞN (i.e. a small optimal ðCHÞN/ð1� EFÞ value)
381 dictates that large variations in ðCHÞN will require analogously large
382 adjustments in EF to minimize Ts RMSE. Consequently, a large variation in
383 ðCHÞN cannot be accommodated without exceeding pre-set EF bounds. This
384 inflexibility enhances the retrievability of ðCHÞN. This is typically the case
385 with dry and sparsely vegetated sites given in Table I and Figure 5 that
386 exhibit low ðCHÞN/ð1� EFÞ and, by (11), highly negative dEF/dðCHÞN. Note
387 the poor retrievability in Figure 3 for the heavily vegetated FIFE site during a
388 wet period relative to the lightly vegetated and drier ELRENO13 and
389 MONSOON1 sites.

390 4.1.3. Diagnostics for Retrievability
391 Results in Sections 4.1.1 and 4.1.2 suggest the potential of two simple
392 diagnostics to evaluate the potential of the Caparrini et al. (2003, 2004)
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393 approach at a given site. The averaged magnitude of Ts � Ta provides a
394 measure of land surface cooling efficiency and the magnitude of ðCHÞN/
395 (1� EFÞ values required to match Ts observations. Smaller optimal values of
396 ðCHÞN/(1� EFÞ dictate more highly negative dEF/dðCHÞN values and less
397 pronounced Ts minima. Likewise, since ðCHÞN is constant within assimilation
398 periods, variations in Ts � Ta manifest themselves as day-to-day variability in
399 EF. Larger variability in EF, in turn, reduces the range of ðCHÞN values that
400 yields EF predictions within physically realistic ranges. For Figure 6, the
401 sharpness of the Ts minima at all eight sites listed in Table I was defined as
402 the absolute range of ðCHÞN values whose Ts RMSE is within 0.2 K of the
403 global Ts RMSE minimum. Each site is ranked according to this sharpness
404 measure. The size of the circles in Figure 6 reflects this ranking, with larger
405 circles assigned to sites with well-defined Ts RMSE minimum. Circles are
406 positioned in the plot according to mean daytime Ts � Ta and the magnitude
407 of day-to-day variations in daytime-averaged Ts� Ta. There exists a ten-
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Figure 5. (a) ðCHÞN=ð1� EFÞ and (b) ðCHÞN values associated with the best fit to Ts ob-
servations for all sites listed in Table 1.
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408 dency for sites with higher mean Ts � Ta and greater Ts� Ta variability to
409 enjoy sharper Ts RMSE minima and improved prospects for the simulta-
410 neous retrieval of both ðCHÞN and EF. Since Ts and Ta observations represent
411 the key drivers for VAR-FR model predictions, these two diagnostics (the
412 mean and standard deviation of Ts � Ta) appear to drive site-to-site varia-
413 tions in the retrievability of ðCHÞN.

414 4.2. PHYSICAL INTERPRETABILITY OF ðCHÞN RETRIEVALS

415 A well-known drawback for one-source energy balance approaches is the
416 non-equivalence of the aerodynamic and radiative temperatures, the latter
417 being strongly influenced by the areal fraction of bare soil viewed by the
418 radiometer (Kustas et al., 2004). Direct measurement of both soil (Tsoil)
419 and vegetation (Tveg) surface radiometric temperatures at the MONSOON1
420 and MONSOON5 sites provides an opportunity to study partial vegetation
421 impacts on VAR-FR ðCHÞN retrievals. Viewing of the surface at different
422 ‘look’ angles leads to variations in the fraction of observed thermal
423 emission originating from the canopy (fv) and variations in the relative
424 weighting of soil and vegetation sources underlying remote Ts observations.
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Figure 6. Relationship between retrievability of ðCHÞN and the mean and standard deviation

of daytime-averaged Ts � Ta differences. Circle size is determined by ranking sites according
to the range of ðCHÞN found within 0.2 K of the Ts RMSE minimum. Larger circles have
smaller ðCHÞN ranges and the best retrievability.
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425 Assuming equal emissivities for vegetation and soil, the radiometric tem-
426 perature Ts can be related to Tsoil, Tveg, and fv via the following approx-
427 imate relationship:

Ts � ½fsT4
veg þ ð1� fsÞT4

soil�
0:25; ð12Þ

429 where fv varies as a function of both observation ‘look’ angle and LAI.
430 Using (12), a series of Ts time series were constructed from Tsoil and Tveg

431 measurements assuming various values of fv. Figure 7 describes the impact
432 of variations in fv, due ostensibly to changes in view ‘look’ angle, on
433 VAR-FR EF and ðCHÞN retrievals at the MONSOON1 site. Viewing
434 partially vegetated surfaces from increasingly high zenith angles (i.e.
435 increasingly further from nadir) leads to increased weighting of vegetation
436 thermal emission and a reduction in the near-surface Ts � Ta value driving
437 turbulent energy fluxes. This cooling increases the magnitude of ðCHÞN/
438 ð1� EFÞ required to match Ts observations. Due to temporal EF vari-
439 ability at the MONSOON1 site that spans the range of physically realistic
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Figure 7. (a) Average Ts � Ta difference, (b) retrieved ðCHÞN and (c) retrieved EF values at the

MONSOON1 site for a range of vegetation fractions.
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440 EF values, increases in ðCHÞN/ð1� EFÞ are most easily accomplished by
441 raising ðCHÞN values. These changes are at odds with the formal definition
442 of ðCHÞN in (6) and suggest that values of ðCHÞN retrieved by the one-
443 source VAR-FR approach actually constitute effective transfer parameters,
444 which reflect, in part, viewing geometry and the impact of background soil
445 temperature. In contrast, variations in fv have relatively little impact on
446 EF retrievals.
447 The impact of bare soil emission on ðCHÞN retrievals over partially vege-
448 tated canopies is also evident in Figure 5b. Note that lower ðCHÞN (i.e.
449 smoother aerodynamic conditions) are required to match Ts observations for
450 the shrub and grassland MONSOON sites versus the bare soil ELRENO1
451 site. This runs counter to expectations concerning the aerodynamic rough-
452 ness at both sites, and most likely reflects the need for anomalously low
453 ðCHÞN values to blunt the impact of very high background soil temperatures
454 at the MONSOON sites.
455 Irregardless of the physical interpretation for retrieved ðCHÞN values, the
456 VAR-FR approach will return accurate energy flux values if transfer coeffi-
457 cients match effective values of ðCHÞN that minimize EF error. Figure 8
458 demonstrates that, with the exception of a very pronounced low bias at high
459 ðCHÞN, fitting to Ts values does a relatively good job at recovering ðCHÞN
460 values that minimize EF RMSE.
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Figure 8. Comparisons between ðCHÞN retrieved by fitting to Ts observations and ðCHÞN
values associated with the best EF predictions. Vertical error bars signify range of ðCHÞN
values found within 0.2 K of the Ts RMSE minimum.
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461 4.3. ACCURACY OF EF AND GF RETRIEVALS

462 Since Rn values are measured and energy balance assumed, flux results for the
463 VAR-FR approach can be completely described with the normalized frac-
464 tions EF, defined in (3), and GF, defined in (10). Figures 9 and 10 show
465 daytime averaged EF and GF predictions made by the VAR-FR method for
466 each study period/site listed in Table I. Dotted lines reflect the spread in EF

467 and GF results introduced by considering all R values within 0.2 K of the
468 minimum Ts RMSE, and open circles are flux tower observations. Uncer-
469 tainty associated with poorly defined Ts minima introduces a significant level
470 of uncertainty into the evaluation of VAR-FR EF predictions. For instance,
471 VAR-FR results for LW(DRY) demonstrate a good fit to EF observations
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Figure 9. Comparisons between VAR-FR EF predictions (solid lines) and flux tower ob-
servations (open circles). Dotted lines represent the range of EF predictions associated with Ts

RMSE within 0.2 K of the global Ts RMSE minimum.
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472 for the ðCHÞN value associated with the best fit to Ts observations (solid line
473 in Figure 9), however essentially identical fits to Ts observations (dotted lines
474 in Figure 9) can produce widely varying, and much worse, EF predictions.
475 The opposite is true at the FIFE(WET) site where the best fit is associated
476 with low EF accuracy, but alternative ðCHÞN values, with only a slightly
477 worse fit to Ts, lead to very good EF retrieval accuracy (see top dotted line in
478 Figure 9 for FIFE(WET)). VAR-FR GF results are generally more robust to
479 the impact of ðCHÞN uncertainty (note the smaller spread of dotted lines in
480 Figure 10 versus Figure 9) and clearly reveal a low bias when compared to
481 flux tower observations.
482 Comparison of results in Figures 9 and 10 to competing TSM predictions
483 offers an important perspective on VAR-FR results. Intercomparisons
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Figure 10. Comparisons between VAR-FR GF prepdictions (solid lines) and flux tower
observations (open circles). Dotted lines represent the range of EF predictions associated with
Ts RMSE within 0.2 K of the global Ts RMSE minimum.
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484 between competing models should reflect underlying differences in model
485 complexity. An attractive characteristic of the VAR-FR model is that it is a
486 parsimonious approach that, in theory, requires little or no ancillary infor-
487 mation concerning surface conditions. In contrast, the TSM requires inde-
488 pendent estimates of vegetation LAI. These values are often estimated as a
489 function of remote NDVI observations (Choudhury, 1987; Choudhury et al.,
490 1994):

LAI ¼
1

�j
ln

NDVImax �NDVI

NDVImax �NDVImin

� �
ð13Þ

492 where j is assumed to be 0.8 and NDVImin (NDVI of bare soil) to be 0.00.
493 NDVImax (NDVI at 100% vegetation cover) values were assumed equal to
494 0.65 at the LW and ELRENO sites (French et al., 2003), 0.75 at the FIFE
495 site, and 0.60 at the MONSOON sites. The roughness length for momentum
496 transfer was taken to be one-eighth of the observed vegetation height at each
497 site. LAI estimates from (13) were used to calculate GF at each site via (10)
498 and fv values used to partition Ts between soil and vegetation sources via
499 (12). Consequently, meaningful comparisons between the TSM and VAR-FR
500 approaches should reflect the ease in which accurate LAI estimates can be
501 obtained from available remote sensing observations. Figures 11 and 12 show
502 EF and GF RMSE results for TSM predictions utilizing a range of LAI values.
503 Horizontal lines represent RMSE for comparable VAR-FR retrievals at each
504 site. Dashed vertical lines represent estimates of LAI obtained from satellite-
505 derived NDVI observations listed in Table I and from Equation (13).
506 Irregardless of the LAI choice, TSM EF predictions (Figure 11) are supe-
507 rior for wet and heavily vegetated conditions at the ELRENO1 and
508 FIFE(WET) sites. Conversely, VAR-FR EF predictions are superior for the
509 bare soil ELRENO13 site and dry conditions at the LW site. Using LAI

510 values derived from Table I and from (13) leads to slightly superior TSM
511 results at the MONSOON5, FIFE(DRY), and LW(WET) sites and similar
512 results at the MONSOON1 site. However, large uncertainty associated with
513 VAR-FR EF predictions (see Figure 9) makes unambiguous EF intercom-
514 parisons impossible. Owing to a reduced uncertainty in VAR-FR results for
515 GF, intercomparison results for GF retrievals in Figure 12 can be made with
516 more certainty. Except for the LW site, where optimal LAI values are
517 underestimated by NDVI observations and (13), RMSE GF results in Figure
518 12 reveal a tendency for the empirical TSM approach (10) to outperform the
519 VAR-FR model.
520 Actual turbulent energy fluxes are plotted in Figure 13, where TSM pre-
521 dictions are based on LAI estimates derived from (13). The overestimation of
522 latent heat flux (LE) by the TSM at the ELENO1 site could be exacerbated
523 by energy closure issues, resulting in the underestimation of LE by flux tower
524 observations at the site (Twine et al., 2000). The underestimation of EF by the
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525 VAR-FR model at the ELRENO1, LW(WET), and FIFE(WET) sites (see
526 Figure 9) manifests itself primarily through the overestimation of H. The
527 VAR-FR approach also tends to overestimate both H and LE at the
528 MONSOON sites owing to the underestimation of GF at these sites.

5. Summary and Conclusions

530 The analysis in Section 4 demonstrates the promise, and potential limita-
531 tions, of utilizing surface radiometric temperature observations (Ts) and
532 variational data assimilation to simultaneously retrieve both surface evap-
533 orative fraction (EF) and turbulent transfer coefficients (ðCHÞN or eR). The
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Figure 11. Comparisons between the accuracy of VAR-FR EF prepdictions (solid horizondal
lines) and TSM predictions (open circles) made using a range of LAI values. Dashed vertical

lines represent estimates of LAI derived from NDVI values listed in Table 1 and (13).
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534 key limitation of the VAR-FR approach presented by Caparrini et al.
535 (2003, 2004) is its tendency to be ill-posed for certain land cover types. At
536 these sites, a continuum of R and EF possibilities exists that produces
537 essentially identical Ts RMSE fitness in model predictions (Figures 1–3).
538 Minima in Ts RMSE can be sufficiently shallow such that large changes in
539 R (and EF) induce only negligible variations in Ts RMSE (Figure 3b and c).
540 Retrievability problems are the most pronounced for sites exhibiting small
541 and non-variable Ts � Ta differences (Figure 5), a tendency typically asso-
542 ciated with densely vegetated and wet surfaces. Unless addressed, retriev-
543 ability problems for these surfaces will make VAR-FR predictions sensitive
544 to even small random perturbations in Ts measurements and prevent the
545 robust retrieval of surface energy fluxes.
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546 The VAR-FR approach also suffers from generic limitations impacting all
547 single-source energy balance approaches over partially vegetated canopies.
548 Results in Figure 7 demonstrate the sensitivity of VAR-FR R retrievals to
549 variations in fractional vegetation coverage – due ostensibly to look angle
550 changes – at the sparsely vegetated MONSOON1 site. The dependence of R
551 on vegetation coverage fraction is not reflected in its physical definition and
552 will complicate efforts to physically interpret results and/or constrain
553 parameters within physically realistic ranges. Despite ambiguities in the
554 physical definition of R, values retrieved by minimizing Ts RMSE predict R
555 values that minimize the EF error (Figure 8) reasonably well. That is, there is
556 a tendency for Ts RMSE minima in Figure 3b to correspond to EF RMSE
557 minima in Figure 3c. In addition, VAR-FR EF predictions, at least at the
558 MONSOON1 site, are surprisingly robust to variations in vegetation cov-
559 erage fraction. The impact of look angle variations is generally confined to
560 altering R retrievals (Figure 7).
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Figure 13. Scatterplot of TSM and VAR-FR H and LE predictions versus flux tower ob-
servations from all study sites. Plotted points are average flux values between 1000 and 1600
local time.
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561 Results in Figures 11 and 12 provide a sense as to how accuratelyLAI values
562 must be estimated in order for the more physically complex TSM to outper-
563 form the more parsimonious VAR-FR approach. For EF, using estimated LAI

564 values estimated from remote NDVI observations, the TSM significantly
565 outperforms the VAR-FR approach over wet and heavily vegetated sites (e.g.
566 ELRENO1 and FIFE(wet)), and does slightly better for partially vegetated
567 conditions at the MONSOON5 site and LW(WET) case. In contrast, VAR-
568 FR EF predictions appear more accurate for the bare soil site (ELRENO13)
569 and dry conditions at the LW site. However, the residual uncertainty con-
570 cerning the true location of Ts RMSE minima in Figure 4, and therefore
571 VAR-FR EF predictions, complicates efforts to unambiguously rank the ap-
572 proaches. Relative to VAR-GR EF predictions, uncertainty surrounding true
573 Ts minima imparts much less uncertainty on VAR-FR GF predictions (Figure
574 10). Nonetheless, results in Figure 12 provide no evidence that the more
575 physically based GF approach calculations made by the VAR-FR approach
576 are superior to the empirical formulation used by the TSM.
577 Taken as a whole, VAR-FR results point towards the need for ancillary
578 land cover information to guarantee a well-posed inversion problem and the
579 robust prediction of surface energy fluxes results by the VAR-FR approach.
580 Surface temperature observations alone are not sufficient to unambiguously
581 constrain both EF and R over partial and heavily vegetated surfaces. How-
582 ever, it is possible that simple and relatively robust ad hoc rules concerning
583 ‘reasonable’ EF and R conditions for various land surfaces may offer sub-
584 stantial improvement. One possibility is tighter constraints on the range of
585 EF values deemed physically realistic at a given site. Figure 4 demonstrates
586 the benefits for R retrievability of constraining EF predictions within smaller
587 ranges. Another possibility is the specification of physically realistic ranges
588 for R, and thus surface roughness, for various land cover types (Section 4.1).
589 Future research should be orientated towards addressing this need.
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